- non-metrizable
- Техника: неметризуемый
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Non-standard analysis — Abraham Robinson Gottfried Wilhelm Leibniz argued tha … Wikipedia
Metrization theorem — In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X,τ) is said to be metrizable if there is a metric such that the topology induced by d… … Wikipedia
Moore space (topology) — In mathematics, more specifically point set topology, a Moore space is a developable regular Hausdorff space. Equivalently, a topological space X is a Moore space if the following conditions hold: Any two distinct points can be separated by… … Wikipedia
Approach space — In topology, approach spaces are a generalization of metric spaces, based on point to set distances, instead of point to point distances. They were introduced by [http://www.math.ua.ac.be/TOP/ Robert Lowen] in 1989.DefinitionGiven a metric space… … Wikipedia
Eberlein–Šmulian theorem — In the mathematical field of functional analysis, the Eberlein–Šmulian theorem is a result relating three different kinds of weak compactness in a Banach space. The three kinds of compactness for a subset A of a topological space are: *… … Wikipedia
G-delta space — In mathematics, particularly topology, a G delta; space a space in which closed sets are ‘separated’ from their complements using only countably many open sets. A G delta; space may thus be regarded as a space satisfying a different kind of… … Wikipedia
Glossary of topology — This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also… … Wikipedia
Topological property — In topology and related areas of mathematics a topological property or topological invariant is a property of a topological space which is invariant under homeomorphisms. That is, a property of spaces is a topological property if whenever a space … Wikipedia
Paracompact space — In mathematics, a paracompact space is a topological space in which every open cover admits a locally finite open refinement. Paracompact spaces are sometimes also required to be Hausdorff. Paracompact spaces were introduced by Dieudonné (1944).… … Wikipedia
Space (mathematics) — This article is about mathematical structures called spaces. For space as a geometric concept, see Euclidean space. For all other uses, see space (disambiguation). A hierarchy of mathematical spaces: The inner product induces a norm. The norm… … Wikipedia
Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… … Wikipedia